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Methods of empirical ex post policy evaluation 

This note gives a non-technical overview over methods of empirical policy evaluation.  

 

0. Causal policy evaluation  

The main purpose of empirical ex post policy evaluation is to answer: what was the causal effect of a 

policy? Or, to use terminology from medical research, to determine the effect of a treatment. For a 

given treatment, an individual can experience two potential outcomes (yi): the outcome without treat-

ment (Di = 0) and the outcome with treatment (Di = 1): 

𝑦𝑖 =  {
𝑦1𝑖   𝑖𝑓 𝐷𝑖 = 1
𝑦0𝑖   𝑖𝑓 𝐷𝑖 = 0

 

The treatment effect is the difference between these two potential outcomes: 

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 =  𝑦1𝑖 −  𝑦0𝑖 

To calculate the treatment effect, we therefore need to know both outcomes. The outcome with treat-

ment (y1i) is observable from data; it is possible to observe the patient after treatment. 

However, the outcome without treatment (y0i), the counterfactual, is not observable. We can not know 

what would have happened to an individual had they not been given treatment. The same is true 

when we talk about policies instead of medical treatments: a firm is either regulated through the EU 

ETS, or it is not. The treatment effect for an individual can therefore never be estimated. 

However, it is possible to find the average treatment effect (ATE) in a population. Social scientists 

generally believe that individuals or firms are similar, so that comparable untreated individuals or firms 

can be used to form a valid counterfactual. 

 

1. The logic of randomized experiments 

How can a comparable group of untreated individuals be identified? The fundamental problem of es-

timating ATEs is to isolate confounding factors with would result in bias – an under- or overestimate of 

the true treatment effect. For example, emissions of EU ETS-regulated firms declined in 2009, but 

was that due to the EU ETS, or the economic recession, or perhaps another factor? 

 

The traditional solution is to use randomized controlled experiments in which a targeted population 

gets assigned to treatment and control group by randomization. In other words, both the treatment 

and the control group are identical on average before the treatment. Any statistically significant differ-

ences in outcomes after the treatment can therefore be due to the effect of the treatment, the ATE.  

The ATE can be estimated as: 

𝐴𝑇𝐸̂ =  𝑦̅1 − 𝑦̅0 =  
1

𝑁1
∑ 𝑦𝑖 𝑖|𝐷𝑖=1 −  

1

𝑁2
∑ 𝑦𝑖𝑖|𝐷𝑖=2     



In other words, the ATE is the difference between the mean outcome of both groups. Note that both 

outcomes are observable.   

Most policies, however, are not randomly assigned. The remainder of this note shows quasi-

experimental techniques to estimate the counterfactual in such cases. All methods use the tools of 

microeconometrics, but the technical specifics are not key. Instead, what matters is a researcher’s 

way of identifying a suitable counterfactual, or their identification strategy. 

 

2. Instrumental variables (IV) 

An instrumental variable (IV) is a variable that is independent of the confounding factors, but correlat-

ed with the treatment. In other words, it only affects the outcome through the treatment. Apart from 

correcting for confounding factors, instruments can be used to overcome measurement error and re-

verse causality (i.e., the outcome itself affects the treatment). 

 

Whether an IV is a good identification strategy depends on two conditions, exogeneity and relevance. 

Exogeneity means that the IV is uncorrelated with the confounding factors, and has no direct effects 

on the outcome. Exogeneity can not be tested for but instead depends on a qualitative argument as to 

whether the setting is convincing in practice. Relevance is a measure for the strength of the correla-

tion between the instrumental and the treatment, and it can generally be tested. 

There are two caveats regarding IV estimates. Firstly, IV generally does not identify the ATE for the 

whole treated population. Instead, IV estimates a local average treatment effect (LATE), i.e. the effect 

of the treatment on a subsample of those treated. Which subsample this is in practice, and how in-

formative about the ATE it is, depends on the setting. Secondly, IV estimates should be interpreted 

with caution even if the identification strategy makes intuitive sense: technical considerations can 

make IV estimates biased under some circumstances (Young, 2018). 

Example: What is the effect of state aid for job creation in the EU? (Criscuolo, Martin, Overman and 

Van Reenen, Forthcoming) 

The paper evaluates a British policy to create jobs through public investment funding. EU state aid 

rules govern the eligibility of a given area to receive public funding. The authors use a change in the 

eligibility criteria for a region to receive the public funds to construct an instrumental variable. 

This identification is credible because it fulfils the exogeneity assumption: all effects on job creation 

can be expected to go through the increased public funds as a result of the policy. The eligibility crite-

ria, by contrast, do not influence jobs themselves. The authors test instrument relevance by showing 

the F statistic of the coefficient on the instrument in the first stage regression, a regression of treat-

ment on instrument that measures the strength of the association between the instrument and the 



treatment (marked in red boxes below). As a rule of thumb, an F statistic beyond 10 is a necessary 

condition for instrument relevance. 

 

Source: Criscuolo et al. (Forthcoming) 

 

 

 

 

 

 

 

 

 

 

 

 



3. Regression discontinuity design (RDD) 

Regulation often uses arbitrary size thresholds. A regression discontinuity design (RDD) compares 

regulated individuals just exceeding the threshold to individuals just below it. Identification in an RDD 

comes from the idea that who ends up on one side of the threshold versus the other is as good as 

random for observations close to the threshold. For example, installations are only regulated in EU 

ETS if they are larger than a certain capacity threshold. Installations just below the threshold would 

therefore be an instructive control group. The differences in the outcome just at the threshold will 

therefore show the average treatment effect at the threshold. 

 

 

Source: Adapted from Ebenstein, Fan, Greenstone, He and Zhou (2017) 

Put differently, the identifying assumption is that all factors except for treatment status vary continu-

ously across the threshold. This assumption can be tested for observable individual characteristics. 

However, such a test is only a necessary condition for identification; unobservable confounding fac-

tors could still exist. 

Identification through an RDD only works if regulated individuals cannot manipulate the assignment. 

In the case of the EU ETS, for instance, an RDD would require that firms cannot change the capacity 

of their installation in response to the announcement of the EU ETS. A statistical test, the McCrary 

test, can be used to test for suspicious patterns in the variable used to assign individuals to treatment 

status. Such a test is, however, only an indication. In some situations it is also not necessary, as ma-

nipulation is ruled out by the setting itself.  

RDD is a transparent identification strategy, though it gives the researchers two parameters that can 

greatly affect the results. Bandwidth decides how far away from a threshold to look. Generally speak-

ing, identification is best when only data points very close to the threshold are used. On the other 

hand, statistical precision increases the larger the sample. For this reason, it is generally considered 

good practice to show the ATE for different bandwidths. Similarly, the estimated ATE depends on how 

the line is fitted across the data points on either side of the threshold. It is again good practice to show 

the ATE for different ways of doing so. 

RDD estimates come with one caveat: they only identify a LATE for individuals at the threshold. In the 

EU ETS example, an RDD would tell us the LATE for small installations. Whether this LATE is in-

formative of the ATE for larger installations is not clear. 
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Example: What is the real word marginal abatement cost of climate policy? (Meng, 2017) 

Meng (2017) evaluates what would have been the marginal abatement cost for firms had the Wax-

man-Markey Bill established a cap-and-trade system for greenhouse gas emissions in the US in 

2009. The proposed bill would have granted regulated firms free allowances if their energy intensity 

exceeded 5 percent. This threshold makes it possible to study the effect of obtaining free allowances 

on stock returns through an RDD.  

The graph below shows a clear discontinuity in average stock returns at the threshold, and this dis-

continuity can be causally attributed to the free permit rule. Meng (2017) then translates these chang-

es in stock returns into marginal abatement costs using a rich arsenal of methods, but we focus on 

just the RDD aspect here. 

 

Source: Adapted from Meng (2013), itself an earlier version of Meng (2017). 

The effects are likely causal as sorting was unlikely: the free permit rule was unexpected, and the en-

ergy intensity was calculated retrospectively. Meng (2017) furthermore includes a robustness check to 

show that his ATE estimate is not driven by his choice of bandwidth. The graph below shows that ATE 

estimates differ little independent of bandwidth. 

 

 

Source: Meng (2017) 
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4. Differences-in-differences (DID) 

A differences-in-differences (DID) strategy is used when there is no obvious control group that is simi-

lar in every way to the treatment group except for the receipt of treatment. Instead, DID assumes that 

the difference between two similar groups is constant over time. Put differently, as shown below, DID 

assumes that the outcome for the treatment and the control group would have followed the same time 

trend in the absence of treatment.  

 

This identification strategy is reasonable when the likely confounding factors affect both groups alike 

and the treatment is unrelated to those factors. The common evolution of the difference across treat-

ment and control group prior to the start of the treatment can be tested based on data. However, such 

a test is only supportive and never conclusive and may not be informative about trends after the 

treatment. For instance, identification still fails if another policy changes at the same time as the one 

that is studied. 

Example: How effective is air pollution control in China? (Stoerk, 2018) 

In my own research, I evaluate whether more stringent air pollution targets actually decreased air pol-

lution in China. To do so, I use a DID identification strategy that compares provinces with a high re-

duction target to provinces with a low reduction target using two different data sources for SO2 emis-

sions. 

The graphs below illustrates how DID works in practice. The solid black line in each graphs shows the 

estimated average treatment effect per year, compared to the first year for which I have data.  



 

 

Source: Stoerk (2018) 

There are two take-aways from this graph: 

1. The data confirm the assumption of common pre-trends: the estimated ATE is 0 for all periods up 

to 2006, which is when the policy was announced.  

2. The policy had an effect in reducing air pollution eventually: the ATE is statistically different from 

zero in 2009 and 2010 (indicated by the dashed lines not including zero). 

 

5. Matching with differences-in-differences 

Matching is used when there is no clear control group for a DID. Typically, this is because the poten-

tial control group is more heterogeneous than the treatment group. Matching constructs a control 

group composed of individuals that look similar to those in the treatment group before the start of the 

treatment. The more data on individual characteristics, the better the match.  

Note, however, that even if both groups appeared perfectly similar in observable characteristics, a 

correct estimate of the ATE is not guaranteed. Unobservable confounding factors could still bias the 

estimated ATE. Matching is for this reason typically combined with a DID approach to account for 

fixed differences across individuals. 

Example: Did the EU ETS cause low-carbon innovation? (Calel and Dechezleprêtre, 2016) 

Did the EU ETS cause low-carbon innovation by regulated firms? To answer this question, Calel and 

Dechezleprêtre (2016) use firm-level data to match EU ETS-regulated firms to firms that are observa-

tionally similar at the start of the EU ETS. They use data on firm-level revenue and patenting to do so. 

The graph below shows that the matches worked reasonably well: the observable characteristics of 

EU ETS firms (on the horizontal axes) are similar to those of unregulated firms (vertical axes).  

 



Source: Calel and Dechezleprêtre (2016) 

 

To convince us that the matched control group is a valid counterfactual, they furthermore show a pla-

cebo test in which they show that firms in both the treatment and the control group are similar even for 

a variable that was not used in the matching process. This test is used to give the reader confidence 

that other unobservable characteristics are equally similar. However, this is just an indication rather 

than proof. 

 

Source: Calel and Dechezleprêtre (2016) 

 

After they have shown us that their identification strategy is convincing, the authors conduct a DID 

estimation to find the average treatment effect of the EU ETS on low-carbon innovation.  

The graph below again offers two take-aways: 

1. The data confirm the assumption of common pre-trends before the start of the policy. 

2. The effect of the EU ETS on low-carbon innovation is visible in the divergence of the number 

of patents of EU ETS firms compared to non-EU ETS firms. 

 

 

Source: Calel and Dechezleprêtre (2016) 
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